SIAM J. NUMER. ANAL. (© 1992 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1166-1186, August 1992 017

A GLOBAL AND QUADRATICALLY CONVERGENT METHOD FOR
LINEAR |, PROBLEMS*

THOMAS F. COLEMANt AND YUYING LI}

Abstract. A new globally and quadratically convergent algorithm is proposed for the linear
loo problem. This method works on the piecewise linear lo, problem directly by generating descent
directions—via a sequence of weighted least squares problems—and using a piecewise linear line
search to ensure a decrease in the lo function at every step. It is proven that ultimately full Newton-
like steps are taken where the Newton step is based on the complementary slackness condition holding
at the solution. Numerical results suggest a very promising method; the number of iterations required
to achieve high accuracy is relatively insensitive to problem size.
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1. Introduction. Given a matrix A € R**™, m > n, and a set of data b € R™,
a common problem is to find a vector z € %™ such that the linear model ATz closely
matches the given data b. Therefore, the following problem is important:

min ||ATz — b||
TeER™

where the most often used measures are 2-norm, 1-norm, and oo-norm. The 2-norm
solution, by far the most popular choice, can be obtained in a single step, e.g., using
a QR factorization of AT.

There are situations where it is preferable to use either || - ||; or || - ||co; however,
the resulting numerical problems are much more difficult. For example, the piecewise
linear functions can be minimized by forming an equivalent linear programming prob-
lem with special structure. A tailored simplex method can then be used (e.g. 1], [2]).
Alternatively, the linear programming formulations can be solved using an interior
point method (e.g., [9]).

In both approaches indicated above, the solution techniques are iterative; how-
ever, the approaches differ: in the first case the sequence of points generated is finite,
whereas in the second, assuming exact real arithmetic, an infinite sequence is gen-
erated (theoretically). The sequence produced by an interior point method usually
converges linearly: this is one place where an improvement can be made. Indeed,
Coleman and Li [5] have developed a globally and quadratically convergent method
for l; problems. Computational results exhibit quadratic convergence; the method is
promising for solving large problems. Recently, Zhang and Tapia [11] also proposed
a quadratically convergent primal-dual interior point method for general linear pro-
gramming; however, no computational results have been reported for that method.
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In [4] the algorithm of Coleman and Li has been subsequently extended to solve lin-
ear programming problems with upper and lower bounds on all variables (A related
algorithm for minimization of a convex quadratic function, subject to bounds on the
variables, is given by Coleman and Hulbert [3].) The approach of Coleman and Li
for I; problems [5] bears some resemblance to interior point methods, a sequence of
weighted least-squares problems is solved, but it also has some distinct differences.
For example, the iterates are not feasible, the /;-function is decreased at each itera-
tion, piecewise linear minimization is performed, and the ultimate convergence rate
is quadratic.

The purpose of this paper is to propose an algorithm for [,,-minimization that is
similar in spirit to the [; algorithm in [5].

The [, algorithm proposed in [5] is a descent direction algorithm. Defining a good
descent direction is nontrivial due to the hyperplanes of nondifferentiability, a7 z = b;.
The manner in which the Coleman-Li I, algorithm deals with nondifferentiability can
be summarized as follows:

1. The [; algorithm generates differentiable points. Therefore, the gradient di-
rection is defined at each iteration.

2. When far from the solution the negative gradient direction is scaled by the
square root of the distances to the nondifferentiable hyperplane alz —b; = 0.
This is done by first globally transforming the variables so that the new
variables correspond to the distances to the nondifferentiable hyperplane.
This scaling helps avoid small steps.

3. Given a descent direction, lines of nondifferentiability are crossed provided
the [; function continues to decrease.

4. Asymptotically, unit Newton steps are taken (Newton steps are defined with
respect to the complementary slackness condition) thus ensuring quadratic
convergence under appropriate assumptions.

The beauty of this approach is that the first-order direction and the Newton step
can be combined in a smooth and automatic way [5].

We first introduce a few notations used in this paper. The sign function sgn(v)
where v is a vector, is used in the following sense: if w = sgn(v),

ws = 1 if (2 > 0,
71 =1 otherwise.

The residual vector is defined by r ey ATz and o & sgn(r). At any point 7, let A
denote the indices of residuals with the maximum magnitude (or activities), i.e.,

A= {11 = max i}

The operator |- | around a set, e.g., |.A|, denotes the cardinality of this set. Otherwise
it denotes the component-wise absolute values of a number, vector or a matrix. The
operator max(z,y) with two vectors as arguments defines a vector whose components
are the maximum of the corresponding argument vectors. The symbol max(z) of a
vector = denotes the maximum component of z. The left arrow = «— y denotes setting
z to y. The vector e is the vector whose elements are all 1’s and the vector e; is the
vector whose elements are all zero except the jth element which is equal to unity. The

symbol ' means that a linear system is solved in a least squares sense, e.g., ATz )
is equivalent to solving

in [|ATz — b||2.
Jmin [| A%z — bll3
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In this paper we develop a new approach (similar to the Coleman and Li [,
algorithm) for the /., problem; however, this is not a trivial extension because there is
no global transformation similar to that referred to above (in which the new variables
themselves correspond to the distances to the planes of nondifferentiability). This is
because the index j of the maximum residual, i.e., |r;| = max(|r|), can change from
iteration to iteration and the planes of nondifferentiability are defined, locally, by

Iag‘x—bi|=la}ﬂx—bjlv Z#Ja i,j=1,'--,m.

Without a global transformation the adaptation of the I; approach is not obvious.
In a nutshell, this problem can be overcome by using local transformations: at

step k we define a matrix T* that transforms the current “residuals” to variables.

In this paper we show that this can be done efficiently; moreover, under appropriate

assumptions, the resulting method is globally and ultimately quadratically convergent.
The linear [, problem can be written as

(1.1) min max |ar z — by|.
TER™ 1<i<m

The optimality conditions for (1.1) are well known: z is optimal if and only if there
exists a vector y such that

(12) Z Aol = 0
i€A

(1.3) dwi=1,  p>0
i€EA

Note that the constraint ), , u; = 1 is artificially imposed to obtain a unique defi-
nition for the multipliers u;: this is standard.
Let j € A. The optimality conditions can be (equivalently) stated:

(1.4) oja; = Z ui(oja; — oia;),
ieA-{j}
(1.5) w20, 1- > 20
i€cA-{j}

DEFINITION 1. We say an l, problem is primal nondegenerate if, at any point z,
{oja; —oia; | i € A—{j}} is of full rank for some j € A.

DEFINITION 2. We call A a dual basic point if AN = 0 and |{l : \; = 0} >
m —n—1. We say an l», problem is dual nondegenerate if, at any dual basic point ),
{l: =0} =m-n-1.

Note. If the matrix A satisfies the Haar condition, the problem is both primal
and dual nondegenerate.

2. An affine scaling algorithm. In this section we propose a new method for
the loo-problem. This method does not possess second-order convergence; however, it
is new, it is globally convergent, and it can be combined with a Newton procedure,
discussed in the next section, to ultimately yield a global and second-order method
(83).

Let Z denote an (m —n) X m matrix, with rank m —n, such that AZT = 0. Then
the lo, problem (1.1) is equivalent to the following constrained I, problem with m
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variables 7:
. def
Jmin $(r) = Irfle
(2.1) subject to Zr = Zb.

The objective function 1 (r) is not differentiable at the points where more than one
residual has maximum magnitude, i.e., |r| = |r;| = maxi<i<m |ri|, | # j. However,
if there is only a single maximum residual then the projected negative gradient of
1(r) onto the null space of Z is well defined and corresponds to a descent direction
for ¢(r). Unfortunately, it may be a poor descent direction since it can lead to a
very small step if a line of nondifferentiability is immediately encountered. This can
happen when there are near-activities, i.e., several residuals are nearly maximum
in magnitude. Therefore, it is preferable to introduce a scaling to (partially) avoid
near-active residuals. To do this we define a local transformation.

At a current point r, assume |r;| = max(|r|) and there is no other maximum
valued residual. Therefore, 1(r) is differentiable in a neighborhood of the current
point 7, and the nearby nondifferentiable region is (locally) defined by the hyperplanes
|rj| — |r:] = 0. If we define a vector s as

(2.2) si=0ri—0oir;, 1<i<m, i#]
(23) Sj = 0475,

then component s; represents the distance to the hyperplane |r;| — |r;| = 0, i # j.
Alternatively, s can be written s = |rjle — |r| + |rjle; = T~'r, where T is a simple
elementary matrix:

(2.4) T =[-01€1,-+,—0j_1€j-1,0,=0j11€j41," "+, —OTmem].
Note that

T~ =[-o1€1, -+, —0j-1€j-1,05€,~0j41€j41," **, ~Omem).
Now problem (2.1) becomes

in ||T°
min [|Ts|

(2.5) subject to  ZT's = Zb.

Locally, the nondifferentiable points for ||T's||o, are simply s; = 0 for some i, i # j.

2.1. The search direction. Assume that r is a differentiable point and let
g = Vi(r) = oje;, D = diag(s'/?) = diag((Irjle — Ir| + Irjle;)!/?), and T = T(r) as
defined by (2.4). We solve the following subproblem to determine a descent direction:

‘min ¢7Td,
d;eR™
(2.6) subject to  ZTd, =0
”D—ldsu2 <é.
Let (is = ads;. We have
(2.7) ds = -T'AT(AT-TD™2T771AT)"1Ag

-D*17 (g — ZTw)
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or

(2.8) d = Tdy,=-AT(AT-TD2T1AT) 1 Ag
~TD*T7(g - 27u*),

where wt is defined by
DTTZTy+ & DTTy.
So, for example, we can compute the search direction d by

D-IT-1ATd, = DTTg,
At =g+ T-T(D)~2T"d.

Here At (= ZTw™) denotes the updated dual variables.

2.2. The algorithm. We compute d as suggested by (2.9) and then define «
using a piecewise linear minimization technique along the ray d (allowing for the
ability to cross lines of nondifferentiability).

Define the breakpoints a; to be the intersections of r; with r; and

75| — |74l 73] + |74l
2.1 S RSP N (] Sl | VR 1 L1 B
(210 J {a * ojd; — 0;d; or o o;d; + 0id;

The piecewise minimization for 4 (r +ad) with respect to a is done by considering
each positive breakpoint (intersection of a residual |r; + ad;| with the maximum
residual |r; + ad;|) in turn, adjusting the gradient to reflect a step just beyond the
breakpoint, and then determining if d continues to be a descent direction for ¥(r).

For example, let

(2.11) a, = min{e; : o; € T},

i.e., e is the smallest positive breakpoint. Then, a step just beyond this point yields
the following gradient: g% = o e,. If (¢7)Td = 0 d, < 0, the intersections with |r,]|
are considered, etc.

Asymptotically, the breakpoint will be computed by the first formula in (2.10)
because the second formula in (2.10) corresponds to the case when r; changes sign
and then intersects with |r;|. From (2.7), it is clear that a; = (0;Af)~". Hence the
stepsize is actually determined by the dual multipliers.

The convergence of the algorithm requires the ability to cross at least one inter-
secting hyperplane if the current maximum residual r; is not active at the solution.
This means that the descent direction has to remain descent after crossing at least
one of the intersecting hyperplanes. This is easier to manage if we can ensure that
the first intersecting hyperplane is distinctly closer than the rest. However, if all
multipliers have the same value at some nonoptimal vertex, then the stepsizes to the
breakpoints, (0;A;)~!, may become indistinguishable. The line search produces an
indicator, mod = true, when the smallest positive breakpoint is jammed with the
next positive breakpoint ay = min(a; : a; > o), i.e., if a; and a; are every close,
then |(0:\f /o;A}) — 1| will be small.

Finally, we restrict our step to be just shy of the true minimizing point along our
search direction in order to avoid a point of nondifferentiability. The parameter T
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Given T, mod «+ false; a{f — 07

Step 1. Compute the set of positive breakpoints J by (2.10);

Step 2. Determine the next smallest breakpoint of = min{af : of > of}. If
(gH)Td* = o dF <0, of —af, f — I, go to Step 2. Otherwise, continue;

Step 3. Let af = min{of : of > of}. If of = 0 (ie., of = of) and |ofA*! -
b X1 < (1 — 7)o AFt, set mod — true;

Step 4. Compute the stepsize:

(2.12) o* = of +7(af — of)
return with the value of mod and the index l.

F1G. 1. Line search procedure 1.

is used for this purpose; 7 is typically a positive number less than but very close to
unity, e.g., 7 = .975.

Using the information produced by the line search, we introduce another diagonal
scaling matrix Dy to ensure separation of the first positive breakpoint from the rest
(thus achieving global convergence):

diag(e — 3€;) if mod = true,
(2.13) Do — { diag(e) otherwise.

The effect of this perturbation is to generate a direction, in the next iteration, in
which the first positive breakpoint is separated from the rest.

The (infinite) algorithm follows. In practice the loop is terminated when we are
close enough to the solution: see §7 for more details.

Let 0 satisfy |r;| < |r;|,% # 4, |rj| = max(|r|) and Zr® = Zb; k « 0.

Step 1. Let |rf| = ||7*||co, Define T* = [—O'fel,---,—a;?_lej_l,ak,—a;-“+lej+1,---,
—okem), ¥ = (T*)~'rk, D¥ = diag(s?)D} where D} is defined by (2.13),
and g* = o¥e;.

Step 2. Compute d* and A*+1 by (2.9);

Step 3. Do a line search on the piecewise linear function 1(r) along the direction d*
(Line Search Procedure 1) to determine o*. Update

k+1

¥l — k4 okdk, k—k+1;

F1G. 2. Algorithm 1.

3. A local Newton process. Close inspection of the optimality conditions for
the linear [, problem can yield a locally and quadratically convergent Newton process.
Alternatively, consistent with the formulation in (2.1), r is optimal if and only if there
exist vectors p,w such that

(3.1) TTg=— Y pe;+T727w,
i€ A—{j}
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(3.2) Zr = Zb,

(3.3) pi=0, 1— > pi>0
i€A—{j}

Recall that g = oje;. This equivalence can be seen by noticing that, using T' as
defined by (2.4), (1.4) can be expressed

gia;=. Y. (AT D)es,
icA—{j}

and by comparing the above with (3.1): i.e., multiply both sides of (3.1) by AT~ 7.
Let A = ZTw. From (3.1),we know that if i € A then \; = o;u;; otherwise, A; = 0.

Now here is the key: system (3.1) can be viewed as a system of nonlinear equa-
tions. In particular, letting

D, = diag(|rjle — Ir| + Ir;le) = diag(s),
the nonlinear system (3.1) is equivalent to
(3.4) D, TT(g - ZTw) = 0.

A (local) Newton iteration can be obtained based on the nonlinear system (3.4)
and the linear constraints (3.2). However, note that T depends on the choice of the
active function j; this choice need not stabilize. Nevertheless, in a neighborhood
of the optimal solution (r*,w*), there are only a finite number of possibilities for j
(there are n + 1 activities when the problem is nondegenerate) and each nonlinear
equation, corresponding to a fixed index j, has the common root (r*,w*). As we
formally establish in §6, the local quadratic convergence behavior of a Newton process
is maintained under these circumstances.

Define Dy = diag(T7 (g — ZTw)); differentiate (3.4), together with (3.2), to yield
a Newton correction:

35 D\T™' -D,7TZT Ar | —-D,TT (g — ZTw)
(3.5) Z 0 Aw| = 0 :

Define dy = Ar; it is easy to prove that the Newton step dy can be expressed as
(3.6) dy = —AT(AT-TD'D\T 1 AT) 1 Ag.

LEMMA 1. Assume (r*,w*) is the solution and the l., problem is both primal
and dual nondegenerate. Then there exists a neighborhood of (r*,w*) such that when

(r,w) is within this neighborhood, and |r;| < |rj| = |Ir|leo, for all i # j, the matriz
AT-TD71D T AT is positive definite.
Proof. The proof is similar to Lemma 1 in [5]. 0

Therefore, the Newton direction becomes a descent direction for the objective
function ¥(r) in the neighborhood of the solution. The Newton step (3.6) is appli-
cable in a neighborhood of the solution where it will yield quadratic convergence. In
contrast, the “linear step” (2.8) is applicable globally but does not allow quadratic
convergence. In the next section, we propose a new way to merge the two approaches
and thereby obtain global and quadratic convergence.
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4. Globalization. The linear step (2.8) can be expressed as

dr = —AT(AT-T D71 T 1AT) 1 Ag,
~~

whereas, the Newton step (3.4) equals

dy = —AT(AT T D71D\ T 1AT) 1 Aq.
N, e’

The similarity in form between the linear step (2.8) and the Newton step (3.6), sug-
gests a possible hybrid method. Our idea is to define a matrix Dy such that the matrix
AT-TD;1DoT~1 AT goes smoothly from AT-TD;'T~1AT to AT-TD; DT 'AT,
as iterates converge to the solution.

Similar to [5], we define

(4.1) Dy = diag((1 - 0)|T™ (g — A)| + be),

where A = ZTw. )
If D, is replaced by Dy above, the direction thus defined is

d=—AT(AT"T D7 Dg T*AT) ' Ag.
N e’

It is clear that as 8 — 0, vector d converges to a Newton step; when 6 = 1, d is
equivalent to the step defined by (2.8).

Next we define 6 € [0, 1] so that § — 0 if and only if (r, A) converges to a solution.
We let 6 encapsulate the optimality conditions. One possible choice is: Define vector
v: v; = max{—a;\;,0};

D, TT (g—X
w2) g T + ol
. - T(g—
y + BTNl o]l

where 0 < v < 1. Clearly 0 < 0 < 1; assuming Z(r — b) = 0, then 6 = 0 if and only if
r is a solution.

If {r*} converges and @ is the limit point of {#*} then for each zero residual at
the limit point:

0+ (1—6)a; )\
of - TECIR iy
where af corresponds to the breakpoint for residual 7 at the iteration k. Therefore,
similar to the difficulty with the linear step, the breakpoints may not be well separated
in the neighborhood of an nonoptimal point when all multipliers, corresponding to the
active functions, are equal. For the same reason a perturbation is introduced in Algo-
rithm 1, the diagonal of Dy needs to be further modified to help bypass nonoptimal
vertices—see §2 for more discussion.

Before we discuss how to modify Dy, we first give a line search procedure ap-
propriate for fast convergence. In order to obtain final quadratic convergence, we
must have a converge to unity sufficiently fast. Hence, instead of a constant T,
7% = max(r,1 — 6%) is used to avoid nondifferentiable points. Moreover, when close
to a solution, there is no need to pass as many breakpoints as possible since the

breakpoints corresponding to the maximum residuals all converge to unity (see §6).
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Given 7%, set § — j, ay — 0, mod — false
Step 1. Compute the set of positive breakpoints J by (2.10);

Step 2. Determine the next smallest positive breakpoint

of, af = min{af : of > of};

If we continue to descend (i.e. g+Tdk < 0) and we are not close to a solution
(e.g., 0% > 0.01), of < af, go to Step 2;

If we continue to descend but we are close to a solution (e.g., ¥ < 0.01), then

of — af, of = min{af : of > of}, go to Step 4;

Step 3. Let of = min{a¥ : af > of}. If of =0 (ie, of = of ) and |ofAF*" —
ok < (1 - 7F)okAf T, set mod — true;
Step 4. Compute the stepsize:

(4.3) oF = a,’f + 7F(af - af).
return with the value of mod and the index I.

Fic. 3. Line search procedure 2.

Using the indicator mod, we further modify:

_ [ diag((1 - 6)|TT(g — N)| + e — 36e;) if mod is true;
(44) Do=1 g T 2 )
iag((1 — 6)|T* (g — A)| + be) otherwise.

A descent direction is subsequently defined using Dg:

(4.5) d=—AT(AT T D7 1Dy T71AT) 1 Aqg.
N e’

It is easy to prove that the matrix Dy satisfies the following.
LEMMA 2. Suppose 0 <y < 1. Assume 0 is defined by (4.2). Then

Dg > 361I.

The (infinite) algorithm follows. In §7 we give our stopping criteria.
Note. There are alternative ways to compute the search direction. For example,
the following extended system can be used, provided Z is available:
L) | DE@H™ —DETHTZT ][ dF | _[ -DiMT(¢* - 27u)
(46) Z 0 Lk | T 0 ’
and ,wk+1 — ,wk + Awk, Ak+1 — ZT’wk+1.

5. Global convergence. In this section we establish global convergence of the
linear and hybrid methods, Algorithms 1 and 2. All the proofs are similar in spirit
to those for I; [5]. The main difference comes from the line search technique which is
reflected in Lemmas 3 and 8, and Theorem 9.

We make the following global assumption.

Assumption. The n-by-m matrix A has full row rank n.

Let S* = T*D* and P* be the orthogonal projector onto null(ZS*), i.e.,

PF =1 - " 27(z8%s+" zT) 178k,
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Let 0 satisfy |r;| < |rj],% # j,|rj| = max(|r|); Zr® = Zb; k «— 0; mod « false;

Step 1. Let |r¥| = |Im*|lo and
T* = [—ofer, -, —0k_je;_1,0%,—0F, €511, -, —0kem], ¥ — (TF)~1rk,
Compute 6% from (4.2); Set D by (4.4);

Step 2. D* = (diag(s*)(D§)™1)%; g* — oe;;

Step 3. Compute d* and \k+1:

((D*)7(T*) 1 AT)dk 2 DH(T*)Tgk;
d* — —ATdk;
AR+ gk +Tk_T(Dk)——2(Tk)—1dk;

Step 4. Let 7% = max(7,1 — 6%); Do a line search on the piecewise linear function
¥(r) (Line Search Procedure 2) to determine o*:

k+1

T —rF + akdF, k—k+1.

Fi1G. 4. Algorithm 2.

The diagonal matrix D* = DF(D¥)~1 where D} is defined by (4.4) for Algorithm 2
and D¥ is defined by (2.13) for Algorithm 1.
Let g = Way(r*). Both algorithms generate the search direction d*:

(5.1) d* = —5kPrgk" gk
— _(SkskT)(gk _ Zka+1)
_ _(TDkZTT)(gk — ZTyh+1),

where w*t! is the least-squares solution to
T s. T
Gk! 7T k+1 L8 ok g~
Alternatively, we can compute the step d by d* = —ATdk, where

k
(5.2) [DET1AT, DFTT ZT) { ka 41 ] = DFTT gk,

The first major step in the convergence proof is to show that ||P* S* gk|| — 0.
This is established in Lemma 6 after several preliminary results.
LEMMA 3. Assume {d*} is defined by Algorithm 1 or Algorithm 2. Then

. T
(5.3) Jim ag||P*S*" g*|13 =0,

where o corresponds to the first positive breakpoint in direction d*. Furthermore,

. kok _ _k+1 k ke kok _ _k+1 gk _
kl-l—{go(ajrj —oy Ty +ag(ojdi — oy dy)) =0,

where ay is defined by Line Search Procedure 1 (or 2) with the convention that f§ = j
if ag = 0.
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Proof. Since ||7*|| is monotonically decreasing and bounded below, ||7*||o, con-
verges; therefore, :

(5.4) Jim (Ir*lloo = Ir*+leo) = 0.
—00

Thus

”"'k”oo _“7'k+1“oo

= ngr’c - g’“"’lTrk - (,v’“g’“'HTd’c (since rF*+1 = rk 4 ok dk),
T

= (9" - g"’*;)TT’“ + o (g" —g" Tk + || PESE g3

(g% d* = —||P*S*" g*|3)
= ofrf —op*rf + ot (ohd} — optidp) + ak||PkSET gk |2

(note : gk = =o0; e,)
= okrk — gFHirk + ok (okdk — o+ T
= gkrk — oy +og(oFdy — oy df) — (o )ak+1 di + o[PSk gk||;.

<

From

ofry — oy tirf + af(okds — oft1df) > 0,
we claim that
(5.5) 0 < 7*ag||P*S*g* |13 < [Ir*lloo — 1P+ |co-

To establish (5.5) note that aﬂ"'ld’C < 0. If of < o, then §f = j and g¥ = gkt

a* = %ok and (5.5) holds; on the other hand, if of > o, it is clear that again (5. 5)
follows.
From (5.4) and (5.5),

lim ag||P*S*g*||3 =0
k— o0

Similarly,
. k. k k
kl-l—vr{.lo(aj — oy ek ok (o kdk 0;°+1d§)) =0.
The proof is completed. O

The proofs of Lemmas 4 and 5 are essentially identical to those of Lemmas 8 and
9 in [5]. Thus they are omitted here.

LEMMA 4. Assume Dy is defined by Algorithm 2 (or Algorithm 1). Under primal
and dual nondegeneracy assumptions, J is nonsingular at any point (r,A = ZTw),
where

J= [ DeT~* -D,TTZT ]
Z 0 ’
Moreover, C = [DgT~ AT, —D,TT Z7] is also nonsingular everywhere.

LEMMA 5. Assume that an lo, problem is both primal and dual nondegenerate
and {\F = ZTw k1 is obtained by Algorithm 1 or 2. Then there exists M > 0 such
that || \*|| < M.

Lemma 5 can be proved using the fact that {D4} is bounded above for any {\¥}
and C is nonsingular everywhere (see [5, Lemma 9], for details).

We can now state the first major result.
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LEMMA 6. Assume {d*} is defined by Algorithm 1 or 2; assume primal and dual
nondegeneracy. Then

lim ||P*S*gk||, = 0.
k—o0

Proof. Using Lemma 3, we know that
(5.6) Jim of||P£S*g"|F = 0.

(Recall: oF is the step to the first positive breakpoint from r* in the direction d*.)
From Lemma 5,there exists M; > 0, such that

(5.7) I(g* — ZTw**)|| < M.

Now assume there exists a subsequence, which we still denote by superscript k
for simplicity, satisfying

(5.8) {IlIP*S*g* |13} — 1 > 0.

From |df| = | PESET gk|12 = ||1S*(g* — ZTw*+1)||2, we have the corresponding d*
satisfying ||d*||2 > ic; for k sufficiently large. Hence from (4.6) and Lemma 4, we
know that

DETT(g* - A*) 4 0.

Thus there exists ¢ > 0 such that 6% > cs.

We now prove that the corresponding subsequence of the first positive break-
points, {ak}, is bounded away from zero, satisfying a¥ > ¢4 > 0, and this will lead to
the obvious contradiction.

From
N 5
© okdt — okdk’
ok k| )k
S+ (1 —6%)|A
ang 2 (T k)l ol__cid=efc4>0.
(|12 w*|) M,

Using the facts that {|r¥|} and {D§} are bounded away from zero and {|A\*|} is
bounded above, we can similarly prove that when af = —(|r¥|+|r.¥|)/(c¥dk + okdk),
aF is also bounded away from zero, which is a contradiction.

Therefore, by (5.6), |P*S*g*|| — 0. O

From Lemma 6, it follows that the point of convergence (A = ZT ) satisfies (3.1);
this along with the nondegeneracy assumption, implies that if the primal variables
converge then so do the duals. We state this formally in Lemma 7 (the proof is
essentially identical to that of Lemma 11 in [5] and therefore we omit it here).

LEMMA 7. Suppose {r*} and {w*} are obtained by Algorithm 1 or 2 and assume
{r*} — 7, a limit point. Further, assume primal and dual nondegeneracy. Then {w*}
converges; i.e., there ezists a point w such that {w*} — w. Moreover,

(5.9) JAF)| = n+1, AA=0, Y Ghi=1, Nh=0Vied, N#0,Viei,
i€EA
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where A = ZTw.

The next result is crucial: it is established that it is not possible to have con-
vergence to a nonoptimal point satisfying 6;\; < 0 if the maximum residual j has
stabilized. From this it is easy to establish (Theorem 9) that a point of convergence
must be optimal. Lemma 8 applies to both Algorithm 1 and 2; however, for simplicity
we give the proof only for Algorithm 2. The proof is trivially adapted to Algorithm
1: replace the definition of Dy by (2.13).

LEMMA 8. Assume the conditions of Lemma 7 are satisfied. Furthermore, assume
that for all k sufficiently large the mazimum residual is fized, say function j, and
gixi >0, i € A—{j}. Then ;\; > 0.

Proof. Lemma 7 immediately implies that (5.9) holds with X; # 0 for all i € A.
We prove the result by contradiction.

Assume then that (5.9) holds, 3;A; > 0, i € A— {j}, but 5,;); < 0. Hence 8 > 0.
By assumption, there exists k; > 0 such that when k > k;, the index of the maximum
residual is fixed. Thus, for k > k;, the residual r, is not crossed and

(5.10) af = ak.

The index of af is fized for k sufficiently large and &, < &;, a; € J.
By definition, a positive breakpoint o is equal to

ok —
af = |)\’.‘_?‘"1|’ i€ A, 1i3# jfor k sufficiently large,

where diag(6%) % D&; So 8pF = 6F + (1 — 6%)|A¥| if i # I and
SE — { 6% + (1 — 6%)|\F|  if mod = false,
o= % + (1= 6%)|\F| if mod = true.

Hence it is clear that a; = oo,1 € A€°.

Assume for all k sufficiently large, D¥ is not modified, i.e., mod = false. From
the line search procedures,| I)\f“l — X s - T)|)\f+1| where £ € A denotes
the next positive breakpoint to the optimal. This means that &; < @,. Using (5.10),
Qo < Qy.

If, on the other hand, D¥ is modified an infinite number of times, we claim again
that @&, < @g. Suppose 7 is such that

Aol = max (%)

Let 7, 0 < 7 < 1, denote the limit point of max{r,1 — 6*}, and define
£={i |l _1’ 51-—7"}.

Al
Then it is easy to verify that for any 1 € £

0 ] ~
—+1-0< =—+1-0=q,<a, a, €J.

Hence, it is clear that, for k sufficiently large, if o € £, the index of the first positive
breakpoint a¥ remains fixed. Since D} is modified infinite number of times, then for
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k sufficiently large, o € £ and D} is modified for subsequent iterations. Therefore,
0, < &y and the first positive breakpoint separates from the rest.

We now establish the required result: c¥d% < 0 for k sufficiently large and therefore
contradicts the assumption that the mazimum residual is fized.

From (2.7), it is easy to see that d,; = —s;/c;. Define

Hence

k
8-
skl = gk _ pkok Ss k(1 — rkpk),

Thus, from &, < @;, we have

1— k
1 — 7kpF :h’“ <1-p, 0<p<1, forlarge enough k and i # o.
Then
k k-1 k-1 k-1 k2
Ss _ 8o 1—-71 : S _ 8 k—k .
_3? - Sf”l 1— Tk"lhf—l < s;c——l (1-p) < < 352 (1-p)" ", i # o.
Since (1 — p)k—*2 — 0, we have
lm %20,  ito
k— o0 Si-c -0 :
Thus, from ds; = —s;/a;, we have
dk
li e
e =0
From
g;d; = Z gididy,
i€A—{j}
we have

Godt = Z 6i)_\,~d§i - dL?o < 0 for sufficiently large k.
i€A-{j}

For k sufficiently large, 5, < 0 for all i € A. Hence, o¥d% < 0 for k sufficiently large.
Therefore, residual r; does not remain the maximum residual, a contradiction. 0
Theorem 9 below is the next major result: it says that if the primal variables
converge, they converge to the optimal point.
THEOREM 9. Assume {r*} is obtained from Algorithm 1 or 2. Assume primal and
dual nondegeneracy. If the sequence {rk} converges to a point r°; then r* is optimal.
Proof. Under the nondegeneracy assumption, we know that r} # 0,i € A =
A(r*). From Lemma 7, [A(r*)| = n + 1, {w*} — w* and, if A\* is defined by \* =
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ZTw*, then AX* = 0 with A} =0, i € A°. Therefore, to establish optimality we need
only show that o7 A} > 0 for all i € A.

Assume the contrary, i.e., for some i € A, o7A} < 0. Then 6* > 0 and there
exists k; such that for k > ki, r¥A¥ < 0, for all ¢ such that r}A} < 0, and r¥r} >
0. for all i € A. Thus, for k > ky, oF*1 = 0¥, i € A

Therefore, from d; = T~1d = —D?>TT (g — ZTw™), we have

2
| = ) = k| = k] - okaE ok ) for i€ A,

where DF = diag(6¥).

First, if there exists k2 > k; such that i # j, i.e., |r¥2| < ||[rk?||; since oFAF+! < 0
for k > ki, it follows that ||r*+1||o — |rF+1| > H'rkHoo |r¥| > 0, for all k& > k2 Hence,
we see immediately that {|7¥|} % ||r*|lco, Which contradicts that i € A. Therefore,
the only case o7 A} < 0 is possible is when i = j is the index of the maximum residual
for all k > k; and o7 A} > 0,7 € A—{j}. But, by Lemma 8, this is impossible. 0

Proof that our sequence converges, as stated in the following theorem, is similar
to the proof of Lemma 15 and Theorem 16 in [5).

THEOREM 10. If an l, problem is both primal nondegenerate and dual nondegen-
erate, then the sequence {(r*,\F)}, generated by either Algorithm 1 or 2, is conver-
gent.

It is now clear that under nondegeneracy assumptions, Algorithms 1 and 2 gen-
erate points that converge to the optimum point. This follows from Lemma 7 and
Theorems 9 and 10.

6. Quadratic convergence. In this section we establish that Algorithm 2 pro-
duces a sequence {(r*,w*)} that converges to (r*,w*) at a quadratic rate. The main
difficulty is that our Newton steps come from different nonlinear systems depending
on the index of the maximum residual. Similar to our approach in [5], the problem is
circumvented by considering a finite set F of systems of nonlinear equations, where
each system in F has the following form:

e { I;'r(__) ?)Ef -TT(9(j) — ZTw) =0,

where y = [rT,w”]T, j € A* and g(j) = o}e;. Note that T corresponds to the
transformation defined by j, the maximum resndual: i.e., T depends on j as well. It
is trivial to see that (7*,w*) is a solution to each system; each system is continuously
differentiable in a neighbourhood of y* = (r*,w*) .

The Newton step at y*, for each of the above systems Fj, is defined by

Thdy = —F(y®),

where

Jh = VEj(y*) = [ D'i’;'l —Di"é’TZT ] N = ZTuk
and
(6.2) Fy(y*) = [ 13‘-(0.1;’“) ]
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Note that the hybrid step d* satisfies
(6.3) Bjd* = —F(y¥),

where

(6.4) 7 0

B;.‘ _ [ DT _DFTTZT ] ’
and j* corresponds to the index of the maximum residual at the iteration k. It is clear
that Fjx € F (i.e., d* is a Newton-like step for some Fjx € F). Of course Fjx # Fjus,
in general, and therefore quadratic convergence is not automatic; however, a slight
modification of Theorem 3.4 in [6] yields a viable approach.
THEOREM 11. Let F = {F; : R™ — R™} be a finite set of functions satisfying:
1. each F; € F is continuously differentiable in an open conver set D;
2. there is a y* in D such that Fj(y*) = 0 and VF;(y*) is nonsingular, F; € F;
3. IVF;(y) — VF;(y*)|l < nlly — y*|| for ally € D, F; € F and some n > 0;
Let {B*} in L(R™) be a sequence of nonsingular matrices. Suppose that for some y°
in D the sequence

yk+1 = yk - (Bk)_l‘pjj" (yk)a k= Oa 17 Tty
remains in D, y* # y* for k> 0, and converges to y*. Moreover, assume
(6.5) IB* — VFx (y*)Il = O(lly* — v*|)).

Then {y*} converges quadratically to y*.

We now show that Algorithm 2 can be described in a manner consistent with
Theorem 3 and therefore quadratic convergence is achieved. Specifically, (6.5) must
be established: the next four results establish several preliminary bounds.

The next two lemma establishes that the dual multipliers and 6* are bounded by
ly* — y*||. The proofs are omitted because they are copies of the proofs for Lemmas
18 and 19 in [5)].

LEMMA 12. Assume that {(r*,w*)} is any subsequence, convergent to (r*,w*),
obtained by Algorithm 2. Then,

(6.6) lw*** —w¥|| = |l || = O(lly* — y*I);

Consequently, | X*** — X*|| = O(||ly* — y*|)).
LEMMA 13. Suppose {0} is defined as in (4.2). Then,

(6.7) 6" < Lilly* — y*|.

LEMMA 14. Assume that an l,, problem is primal and dual nondegenerate and
that the sequence {(rx,wx)} is generated by Algorithm 2. Then,

(6.8) a* —1=0(ly* - |-

Proof. Since ¥ — 0, from Line Search Procedure 2, we know the stepsize a* =
of + (1 - 6%)(ef — of),of > of, where [, € A*, or of = 0. From Lemma 12 and
Al # 0,it is clear that

0F + (1 — 6%)|\F|

6.9 af —1=
9 ! ay

—1=0(ly* - y*|I);
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similarly,
(6.10) af —1=0(lly* - y"Il).
From Lemma 13
* = O(lly* - v*II);
therefore, using (6.9) and (6.10),
o* —1=0(lly* - v*|).

The proof is completed. 0
Denote B* = BJ’.‘k QF where

)

and ep(em—n) denotes a m-vector ((m — n)-vector) with each entry equal to unity,
B« is defined as in (6.4). But y**t! = ¢* 4 Q"' d*, where d* is defined by (6.3);
therefore, from Lemma 14, we have

1% — 1|l = O(lly* - y*|I)-
The hybrid step defined by Algorithm 2 satisfies
BF(y**! — y*) = —Fje(y*) for k sufficiently large.

LEMMA 15. Assume {y*} is obtained through Algorithm 2; assume primal and
dual nondegeneracy. Then

IB* — V3 (y*)ll2 < Llly* — y*l2

for some Fjx € F.
Proof. From continuity and Lemma 14, it is clear that

IB¥ = Till = (B — Jf)Q* + (J5 — J5)QF + (QF - D3|
= O(|Bf — J5I) + O(ly* — v* 1) + Oly* — v )
From
k E _ (D’c - D")T“1 0
Bjk - ij - [ ¢ 0 A 0, ]
we have

1B = TRl = O(I DT~ — DET1|l2)
= O(lI((1 — 6%)| DT | + 6FI — D5T1|2)
= O([|IDXT~*| — DT ||2) + O(6*)
= O(lly* — y*[l2) + O(6*)
= O(lly* - v*I) (from Lemma 13).




LINEAR lo, PROBLEMS 1183

Hence,

1B, = Jllz2 = O(lly* — y"ll2),
and therefore,

IB* — J3,ll2 = O(lly* — y*l2).-

The proof is completed. 0

The assumptions of Theorem 11 are now established; quadratic convergence of
Algorithm 2 follows immediately.

THEOREM 16. Suppose the lo, problem is primal and dual nondegenerate. Assume
the sequence {(r*,w*)} is obtained from the Algorithm 2. Then {(r*, w*)} converges
quadratically to (r*,w*).

7. Numerical testing. In this section we provide preliminary numerical results
concerning Algorithm 2, the hybrid method (New). Our experiments are not exhaus-
tive; our purpose here is to determine the viability of our approach. Is quadratic
convergence observed? Is high accuracy achieved? Does the method hold promise for
problems of increasing dimensions?

We have implemented the method in PRO-MATLAB {7] using SUN 3/50 and
3/160 workstations. The linear least-squares subproblems are solved using orthogonal
QR-factorizations with row interchanges for greater stability [10]. No account was
made of sparsity in our experiments. A starting point for the hybrid method is
computed as follows':

Ls.
0 —b— ATz°, where ATz = b,

T 0
e

The settings of the parameters for Algorithm 2, New, are

A0 —

T« .975, v+ .99.

The dependent variable 6% is a measure of the distance from optimality and the
algorithm is stopped when

6% < 10713

where machine precision on our system is approximately 10~16,

We have generated two classes of test problems. First we generated random
problems of varying dimensions. Second, since l,, minimization is often used in a
function approximation context [8], we have tried several such problems.

On each test problem we compare the number of iterations to that achieved by
the popular Barrodale-Phillips algorithm [1]. We do this to get a general feeling for
the relative standing of the two algorithms and to examine the relative sensitivities
of the two algorithms to problem size and problem class in terms of number of it-
erations required. We do not compare running times: we do not yet have a sparse
implementation of our method.

1For simplicity we choose A? without requiring A% = ZTw? for some w®. However, the compu-
tation of Ak for k = 1,2, ... ensures \* = ZTwk for k= 1,2, ....
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The entries in Tables 1-5 below represent the total number of required major
iterations.

TABLE 1
m = 50

Number of Steps
n | New | BP
10 10 24
20 9 40
30 10 47
40 9 64

TABLE 2
m = 100

Number of Steps
n | New | BP
10 8 25
20 11 69
30 12 68
40 13 116
50 10 113
70 12 153
90 12 124

TABLE 3
m = 200

Number of Steps
n New | BP
10 7 25
20 12 68
30 12 113
50 13 193
70 13 249
100 13 340
140 22 382
160 15 388
190 14 302

PrROBLEM 1. Random [, problems: We generated the elements of matrix A and
right-hand side b in a uniform random manner.

New exhibits little variation with m and n: for fixed m there is a mild increase in
number of required iterations as n increases (until n gets close to m). On the other
hand, BP requires significantly more iterations as problem size increases.
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TABLE 4
n =5, f(z) = exp(2)

Number of Steps

m BP | New
100 10 7
200 11 8
400 12 8
600 12 8
800 12 8
1000 | 12 8
1200 | 12 9
1500 12 10
1800 | 12 9
2000 | 13 9

TABLE 5
n = 8, f(z) = exp(2)

Number of Steps
m BP | New
100 15 7
200 18 9
400 18 10
600 21 10
800 19 9
1000 | 18 10
1200 | 22 10
1500 | 21 10
1800 | 21 11
2000 | 20 10

PROBLEM 2. Approximate f(z), evaluated at z =0, L,---,1, by a polynomial of
degree n — 1:

$(z) = i a; 2771,

j=1

where z = (aj,- -, an).

The relative performance of BP is much improved for approximation problems
compared to random problems. As observed in [2], this is largely due to the clever
starting point procedure available to the BP algorithm for approximation problems.

The quadratic convergence of the new algorithm is observed in our experiments.

8. Conclusions. In this paper we have presented a new iterative method for
solving l., problems. The algorithm is appealing because, similar to affine scaling ap-
proach for linear programming, the number of iterations required to solve a problem
is relatively insensitive to the problem size. Moreover, since the algorithm is quadrat-
ically convergent, a solution can be obtained with high accuracy quickly (thus it is
comparable to a solution obtained by a simplex type algorithm).
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The algorithm is easy to implement: At each iteration, the major computation
is a weighted least-squares solve. Finally, we remark that any technique available to
speed up least-squares solving—e.g., exploitation of structure, sparsity, parallelism,
will benefit this I, algorithm directly.
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